
I. BACKGROUND

Whether enjoying the luxury of a bubble bath or enduring
the drudgery of washing dishes, one is likely to be struck by
the beauty and intricate structure of foams, froths, or
“suds”. Keen observers may even notice the unusual elastic
and yield properties, not seen in the constituent aqueous
and gaseous phases. Scientifically, the interest in, and the
study of, foams have been truly multidisciplinary and have
not been confined to chemists, engineers, and physicists.
Foams have traditionally inspired mathematicians for their
geometric properties and as equilibrium structures in which
the surface area is minimized (1). Metallurgists (2) have re-
alized the similarity between foams and polycrystalline
metals, both in their structure and coarsening behavior
(grain growth). Similarly, botanists and life scientists in
general have noticed strong structural parallels between
foams and living tissues (3).

Gas-liquid foams are abundant in nature and their tech-
nological applications are numerous. They are used to ad-
vantage in fire fighting, enhanced oil recovery, foods (e.g.,
whipped cream), cosmetics (e.g., shaving cream), and in
many other ways. The “world of foams” may be consider-
ably expanded by the realization that concentrated

liquid/liquid emulsions, although generally characterized
by a much smaller mean size of the dispersed units, are
structurally identical to gas/liquid foams, which is readily
revealed under the microscope. Macroscopically they be-
have like viscoelastic gels, mayonnaise being a good ex-
ample. Such emulsions have been variously referred to as
high-internal-phase-ratio emulsions (HIPREs), bili-quid
foams, “aphrons”, or, simply, highly concentrated emul-
sions. Although they lack the compressibility of gas/liquid
foams, they behave similarly in all other respects. Detailed
study of such emulsion systems started relatively recently
and may perhaps be traced to the attempts of Lissant (4-6)
and Beerbower and coworkers (7-10) to design safer avia-
tion and rocket fuels, in which fuel droplets are tightly
packed inside a continuous aqueous phase. Reverse, i.e.,
concentrated water-in-oil systems can be readily prepared
as well. They find application in the high-explosives area,
but have particular appeal in the foods and cosmetics in-
dustries. What entrepreneur’s mouth would not water at the
prospect of being able to sell a product that is at least 90%
water and yet is luxuriously rich and creamy? Lissant in
particular patented numerous potential applications in these
areas (e.g., 11). In yet other applications, the oil phase, ei-
ther external or internal, can consist of a poly-merizable
monomer. Subsequent polymerization by heat or radiation
can lead to interesting polymers or structurally unique ma-
terials (e.g., 6, 12-16).
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Because of all these scientific and technological aspects,
a thorough understanding of foams and concentrated emul-
sions is highly desirable. In response to this need, there has
lately been a clear upsurge in interest, again from a variety
of disciplines, and considerable progress has been and is
being made. Several comprehensive textbooks on emul-
sions and foams have recently been published (17-20). We
believe that the overlap with this review is minimal.

II. INTRODUCTION

In general, when a fluid phase (liquid or gas) is dispersed
in an immiscible liquid to form drops or bubbles, there is a
tendency for the phases to separate again to reduce the aug-
mented surface free energy. With pure phases, this proceeds
by rapid coalescence of approaching dispersed entities, as
there is no barrier against rupture of the intervening liquid
film. Stability or, more correctly, metastability, can be con-
ferred by adsorption of surfactants, polymers, or finely di-
vided solid particles at the interface. By this expedient,
coalescence can often be suppressed completely. However,
this will not prevent ultimate phase separation, as there is
another mechanism for reducing the surface area, namely,
Ostwald ripening. By this mechanism, large bubbles or
drops grow at the expense of small ones by dissolution and
diffusion of the dispersed phase in response to the higher
Laplace pressure in the latter ones. Because gases tend to
have greater solubility and diffusivity in a given continuous
liquid than do other liquids, this process is generally much
more rapid in foams than in emulsions. Indeed, while most
foams will not survive for more than a few hours -even in
the absence of coalescence - it is relatively easy to prepare
concentrated emulsions whose drop size distribution does
not change perceptibly for months or years. They are ki-
netically or operationally (although not thermodynami-
cally) stable. For this and many other reasons, emulsions
may be better characterized, and their properties more reli-
ably investigated experimentally, than is possible with
foams. Thus, to learn about foam behavior through experi-
ments, we recommend that one look at concentrated emul-
sions instead. In the same vein, we may use the terms
“bubble” and “drop” interchangeably.

In this review, we shall only consider stable dispersions,
in which coalescence has been totally suppressed. We fur-
ther restrict ourselves to highly concentrated dispersions,
in which the volume fraction of the dispersed phase, Φ, ex-
ceeds a critical value Φ0 where the properties start to

change drastically. This critical volume fraction corre-
sponds to that of a system of close-packed spheres having
the same drop volume distribution as the dispersion. The
term “close packed” is somewhat ambiguous and the cor-
responding volume fraction is not always clearly defined
and/or established. Although monodisperse spheres can in
principle be packed to a maximum density of Φ0 = 0.7405,
this value is rarely achieved. In practice, one is more likely
to achieve only random close packing, which is consider-
ably less dense (Φ0Φ 0.64) due to the voids created by
“arching”. There is a persistent myth that the packing den-
sity of a polydispersesystem is characterized by Φ0 >
0.7405. It is true that the voids in a close-packed system of
spheres can be filled sequentially with ever smaller spheres
of very specific sizes until Φ0Φ 1. However, this would re-
quire a unique multimodal size distribution, as well as a
unique spatial distribution, neither of which are likely to be
ever encountered in practice. It is our experience with typ-
ical, unimodal polydisperse emulsions that the spherical
droplets arrange themselves at a packing density that,
though considerably larger than the 0.64 expected for the
random close-packed monodisperse case, is close to, but
slightly smaller than, 0.74. Although the actual value must
depend somewhat on the details of the size distribution, we
estimate that 0.70 < Φ0 < 0.74 in most practical cases (21,
22).

There are reasons why the effective value of Φ, including
that of Φ0, may deviate from the apparent value. If the
thickness, h, of the stabilized film of continuous phase, sep-
arating the dispersed drops or bubbles, is not insignificant
compared to the drop or bubble radius, R, then the effective
volume of each drop must be augmented by that of a sur-
rounding sheath of thickness h/2. This leads to a somewhat
larger effective volume fraction, Φe, which is given (21)
by
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The latter form is a good approximation for any Φ> Φ0 and
h/R` 1. In most foams, the effect is expected to be mini-
mal, as the bubbles tend to be relatively large. For emul-
sions of small drop size, however, the effect may be
considerable and the peculiar properties resulting from ex-
treme crowding may commence at an apparent volume
fraction that is considerably smaller than one would expect
for zero film thickness. For example, in an emulsion with
droplets of 2R - 1 um and h = 50 nm, the effective volume
fraction already reaches a value of 0.74 at an apparent vol-
ume fraction of only about 0.64! The finite film thickness
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may, for example, result from electrostatic double-layer
forces (23) or adsorbed polymers. In what follows, we shall
assume zero film thickness, with the understanding that Eq.
(1) is to be invoked whenever h/R≠ 0.

Another complication arises when strong attractive
forces operate between the drops or bubbles. This may lead
to a finite contact angle, 6, between the intervening film (of
reduced tension) and the adjacent bulk interfaces (21, 24-
26). Under those conditions, droplets will spontaneously
deform into truncated spheres upon contact and can thus
pack to much higher densities. For monodisperse drops, the
ideal close-packed density, consistent with minimization of
the system’s surface free energy, is given (21) by

ture. Nevertheless, the structure may be irreversibly densi-
fied to approach the condition prescribed by Eq. (2) by cen-
trifugation and subsequent relaxation (21, 25). Foams and
emulsions in which θ≠ 0 have only been studied occasion-
ally and will rarely be touched upon in this review.

III. STRUCTURAL ELEMENTS

As discussed above, the nature and properties of fluid/ fluid
dispersions start to change drastically when the volume
fraction approaches or exceeds Φ0. A certain rigidity sets
in, because the drops or bubbles can no longer move freely
past each other.

As the volume fraction is raised beyondΦ0, the drops
lose their sphericity and are increasingly deformed while
remaining separated by thin stable films of continuous
phase. At sufficiently high Φ, the drops become distinctly
polyhedral, albeit with rounded edges and corners. At this
stage the continuous phase is confined to two structural el-
ements: linear Plateau borders with essentially constant
cross-section over some finite length, and tetrahedral
Plateau borders where four linear borders converge (Fig.
la).

Each linear border is generally curvilinear and fills the
gap between the rounded edges of three adjoining polyhe-
dral drops. In cross-section, its sides are formed by three
arcs, each pair of which meet tangentially to form the thin
film separating the corresponding droplet pair (Fig. 1b).
The pressures in the drops are related to the mean curva-
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which is valid up to θ = 30θ, where θ0 = 0.964. For θ = 0,
we recover θ0 = 0.7405, while θ0 is expected to reach unity
when θ exceeds 35.26° (21, 26). In the latter limit, all of the
continuous phase (except that in the intervening films)
should, in principle, be squeezed out spontaneously. In
practice, however, one tends to find just the opposite, i.e.,
when θ is large, the droplets spontaneously flocculate into
a rather open structure in whichΦ0 < 0.7405. The situation
is similar to that of a flocculated solid dispersion whose sed-
iment volume is generally greater than that of a stable dis-
persion. Apparently, the strong attractive forces prevent the
droplets from sliding into their energetically most favorable
positions, leaving large voids in the otherwise dense struc-

Figure 1 (a) Four linear Plateau borders meeting in a tetrahedral Plateau border; (b) cross-section through a linear Plateau border and its
three associated films and drops.
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tures of the intervening films through where ó is the inter-
facial tension between the continuous and dispersed phases,

For each film to be stable, it must be able to develop an
internal, repulsive disjoining pressure∏b to counter-act the
capillary suction acting at the film/Plateau border junction.
At equilibrium, it can be readily shown from the above that
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and the sign of each film curvature C is taken as positive
(negative) if the pressure in the drop indicated by the first
index is the higher (lower) one. Adding Eqs (3) leads to the
following relationship between the three mean film curva-
tures:

The pressure inside the linear Plateau border, Pb is given
by

where c1, c2, and c3 are the curvatures of the border walls
and are all counted as positive. Since all Plateau borders are
connected, they are in hydrostatic equilibrium.

Normally, an ambient gaseous atmosphere of pressure P
surrounds the dispersion. Relative to this ambient pressure,
pb is lower and given (27) by

where ιCtι is the absolute value of the curvature of the free
continuous-phase surface at the dispersion/atmosphere
boundary (i.e., between the exposed bubbles), and ac is the
surface tension of the continuous phase [ó = ó for foams,
but σc≠σ for emulsions (27) unless the “ambient atmos-
phere” consists of the bulk dispersed liquid].

The excess pressures in the drops, relative to that in the
interstitial continuous phase, pb are often referred to as their
capillary pressures, pc. For example,

It is clear that, in general, the capillary pressure varies from
drop to drop.

When Eqs (3) are combined with Eqs (5), the following
relationships between the curvatures of the films and those
of the Plateau border walls are obtained:

Thus, the disjoining pressures in three confluent films are,
in general, unequal. It turns out that the difference in the
disjoining pressures in two of the films is defined by the
curvature of the third film. For example, from Eqs (9) and
(8):

The inequality of the disjoining pressures implies that the
films may have slightly different equilibrium thicknesses
and tensions. In extreme cases (28) this may lead to sensible
deviations from Plateau’s first law of foam structure, stated
below.]

As the volume fraction approaches unity, the linear
Plateau border shrinks into a line. In this “dry-foam” limit,
mechanical equilibrium demands that the three films - of
presumed equal tensions - meet pairwise at angles of 120°
along this line (Plateau’s first law of foam structure). How-
ever, even when the Plateau border is finite and the films do
not really intersect, the principle may well hold when ap-
plied to the virtual line of intersection that is obtained when
the films, while maintaining their curvatures, are extrapo-
lated into the border (dashed lines in Fig. Ib). A rigorous
proof has been published by Bolton and Weaire (29) for
two-dimensional (2-D) foams, in which the Plateau borders
are rectilinear. To our knowledge, no proof has yet been
presented for the more general case of curvilinear borders
in three-dimensional (3-D) space. In fact, since the Plateau
border can be viewed as a line with a line tension (30), this
broader statement of Plateau’s first law may not strictly
apply when the border has some finite longitudinal curva-
ture.

A tetrahedral Plateau border is formed by the confluence
of four linear Plateau borders (Fig. la). It fills the gap be-
tween the rounded corners of four adjoining polyhedral
drops. The pressure in the tetrahedral border is, of course,
equal to that in each of the outgoing linear borders, which
sets the curvature of each of its four bounding walls. In the
dry-foam limit (Φ → 1), the tetrahedral border reduces to a
point (“vertex” or “node”), where the four linear borders
meet pairwise at the angle of cos-1(-l/3) = 109.47° (Plateau’s
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second law of foam structure). The principle probably re-
mains valid for finite borders, when applied to the point
where the four virtual lines of film-intersection (see above)
meet upon extension into the tetrahedral border.

IV. OVERALL STRUCTURE AND OSMOTIC
PRESSURE

Having described the structural elements of foams ap-
proaching the dry-foam limit ( Φ → 1), it is still a daunting
task to describe the structure and properties of the system
as a whole. The task is even more difficult for systems in
which Φ 0 is exceeded, but the polyhedral regime has not
yet been reached. In this case, the drops have exceedingly
complex shapes, and linear and tetrahedral Plateau borders,
as defined above, are not present. Much can be learned
about the qualitative behavior by considering 2-D model
systems, in which the drops do not start out as spheres but
as parallel circular cylinders, and tetrahedral Plateau bor-
ders do not arise. We shall first consider the particularly
simple monodisperse case, with a subsequent gradual in-
crease in complexity.

[Lest the reader think that 2-D foams are just figments of
the imagination, it must be pointed out that they can be gen-
erated - or at least closely approximated - by squeezing a 3-
D foam between two narrowly spaced, wetted, transparent
plates (2, 31-35). Structurally even closer realizations may
be obtained in phase-coexistence regions of insoluble
monolayers of surface-active molecules at the air-water in-
terface (36), where the role of surface tension is taken over
by the line tension at the phase boundaries.]

A. Monodisperse, 2-D Systems

Such a system has been discussed in detail in Ref. 37. In the
absence of gravity, the circular cylinders of radius R arrange
in hexagonal packing (Fig. 2a) at a volume fraction Φ0
=π2√3 = 0.9069. In cross-section, each circular drop can
be thought to be contained within a regular hexagon of side
length a0 = 2R/√3. As the volume fraction is increased, the
drop is flattened against its six neighbors to form a hexagon
of side length a(< a0) but with rounded corners described
by circular arcs of radius r (Fig. 2b). At constant drop vol-
ume, one finds

The capillary pressure in each drop is given by pc = ó/r or,
when scaled by the initial capillary pressure <~?~[$$]> by
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Figure 2 (a) Uncompressed cylindrical drops in hexagonal close
packing (Φ = Φ0 = 0.9069); (b) compressed drop (0.9069 < Φ <
1).

In the above process, the surface area of each drop, per unit
of length, increases from S0 = 2πR to S = 6(a - 2r/√3) + 2πr
which, at constant drop volume, can be shown to lead to

This function has been plotted in Fig. 3. In the limit of Φ=1,
the scaled surface area reaches a maximum that is given by

Figure 3 Scaled surface area, S/S0, for monodisperse 2-D drops
as a function of volume fraction.
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The scaled surface area and its variation with Φ are of
crucial importance in the definition and evaluation of the
“osmotic pressure”, ∏, of a foam or emulsion. We intro-
duced the concept in Ref. 37, where it was referred to as
the “compressive pressure”, P. It has turned out to be an
extremely fruitful concept (22, 27, 38). The term “osmotic”
was chosen, with some hesitation, because of the opera-
tional similarity with the more familiar usage in solutions.
In foams and emulsions, the role of the solute molecules is
played by the drops or bubbles; that of the solvent by the
continuous phase, although it must be remembered that the
nature of the interactions is entirely different. Thus, the os-
motic pressure is denned as the pressure that needs to be
applied to a semipermeable, freely movable membrane,
separating a fluid/fluid dispersion from its continuous
phase, to prevent the latter from entering the former and to
reduce thereby the augmented surface free energy (Fig. 4).
The membrane is permeable to all the components of the
continuous phase but not to the drops or bubbles. As we
wish to postpone discussion of compressibility effects in
foams until latter, we assume that the total volume (and
therefore the volume of the dispersed phase) is held con-
stant.

As long as the membrane is located high up in the box
in Fig. 4, the emulsion or foam may be characterized by Φ
<Φ0 and ∏ = 0. As the membrane moves down, a point is
reached where Φ = Φ0. Any further downward movement
requires work against a finite pressure n, reflecting the in-

crease in the total surface area as the drops are deformed,
i.e.,
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Figure 4 Semipermeable membrane separating dispersion from
continuous phase; pressure to prevent additional continuous phase
from entering the dispersion is the “osmotic” pressure, ∏. [From
Ref. 38. Copyright (1986) American Chemical Society.]

where V is the dispersion volume, V1 is the volume of the
dispersed phase, V2 is the volume of the continuous phase
in the dispersion, and a is assumed to be constant. As V =
V1 + V22 and Φ=V1V, Eq. (15) leads to the completely
general expression:

where S/ V1 is the surface area per unit volume of the dis-
persed phase. Alternatively, as shown in Ref. 27, ∏ may be
equated to the pressure difference between an ambient at-
mosphere and the continuous phase in the dispersion, or
from Eq. (6):

For yet a third useful way to express n, see Refs 22, 27 and
38.

For the special case of a monodisperse, 2-D system:

which, when combined with Eqs (16) and (13), results in

or, in reduced form:

where Φ0 = 0.9069. Figure 5 shows the dependence of ∏
on Φ.

The suggestion has been made (D.R. Exerowa, personal
communication, 1990), since withdrawn (20, 39), that ∏
and pc are really identical. It is clear from the above that
this is not so. In fact, examination of Eqs (20), (11), and
(12) shows that, at least for this simple model system:
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Figure 5 Reduced osmotic pressure as a function of Φ for per-
fectly ordered 2-D system.

Both and tend to infinity in this limit, but the relative
difference between them tends to zero. This is the regime of
concern in much of the interesting work of Exerowa et al.
(e.g., 40, 41), where the difference between the capillary
and osmotic pressures may, therefore, indeed be safely ig-
nored (39). However, this is not so in general and we shall
demonstrate below that O is a much more useful and in-
formative parameter than pC.

Before leaving this topic, it should be mentioned that
modifications of most of the above expressions have been
derived to take account of finite film thickness, finite con-
tact angle at the film/Plateau border junction, or both (37).
Finally, it must be realized that a monodisperse, 2-D system
does not necessarily pack in the highly ordered, hexagonal
state depicted in Fig. 2. Herdtle et al. (personal communi-
cation, 1993) have constructed highly disordered, yet
monodisperse, 2-D dry foams with periodic boundaries
(Fig. 6), in which all films meet at angles of 120 and all
film curvatures satisfy Eq. (4). These are equilibrium struc-
tures, whose surface energy, though at a local minimum,
must be higher than that of the perfectly ordered hexagonal
system. Because the bubble pressures are not the same,
such a system is bound to coarsen, thereby reducing its total
surface energy. In practice, disorder of this type may be im-
posed by the finiteness of any system with bounding walls.
If the walls are wetted by the continuous phase, then the

outer films must be directed normal to the walls, which is
generally incompatible with a perfectly ordered internal
structure. As we shall see, this complication arises in 3-D
foams as well.

B. Polydisperse, 2-D Systems

In the last decade or so, much progress has been made to-
ward a more complete understanding of these disordered
structures. Most work relies on the computer generation of
disordered, polydisperse structures with periodic boundary
conditions, in which the film angles and curvatures obey
the rules set forth above. For a recent review, see Ref. 31.
An example, taken from Ref. 42, is shown in Fig. 7. The
structure contains many bubbles that are not hexagons, but
it is readily proven that the average number of sides is still
six (42). Simpler and very special types of polydispersity
and disorder have been considered by Khan and Armstrong
(43) and Kraynik et al. (44). In these cases, illustrated in
Fig. 8, all bubbles are still hexagons and all films remain
flat; the bubbles, therefore, do not coarsen with time. The
first system (Fig. 8a) is simply bimodal and is obtained by
increasing or decreasing the height of all bubbles in a given
row. The second system (Fig. 8b) is much more disordered
and can be generated from the monodisperse system by ran-
domly increasing (or decreasing) each bubble area, as il-
lustrated in Fig. 9, with the limitation that no vertices ever
touch or cross over, lest Plateau’s first law be violated and
resulting (so-called Tl) rearrangements lead to a much more
complex structure. The total surface area is not affected by
such transformations, so that, as in the monodisperse case:
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This is not necessarily true for the more general structures
such as that in Fig. 7. Unfortunately, although presumably
available as a result of the numerical simulations, the value
of S1/S0 and how it varies with the details of the size dis-
tribution, appears not to have been reported for these cases.

Starting from a dry-foam system as in Fig. 7, the volume
fraction can be lowered by “decorating” each vertex with a
Plateau border, whose wall curvatures obey the rules set
forth above (29). As the volume fraction is lowered by in-
creasing the size of the Plateau borders, a point is soon
reached where adjacent Plateau borders “touch” and subse-
quently merge into single four-sided borders. Bolton and
Weaire (45) have followed this process down to the volume
fraction Φc, where all bubbles are spherical and structural
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rigidity is lost. This is perhaps the most satisfactory defini-
tion ofΦ0. Their finding suggests that, for that particular
system,Φc equaled 0.84 (not 0.9069), which happens to be
close to the random packing density of (monodisperse) cir-
cular disks. Using similar computer simulations, Hutzler
and Weaire (46) calculated the osmotic pressure and found
it to obey Eq. (19) closely in the “drier” regime. It started
to deviate at lower volume fraction and did not reach zero
until Φdropped to about 0.82, which is close to the above
rigidity loss transition.

C. Monodisperse, 3-D Systems

Ideally, uniform spheres arrange in “hexagonal close” pack-
ing, which is face-centered cubic (fee), at Φ0=ξ √2/6 =
0.7405. The role of the circumscribing hexagon in
monodisperse 2-D systems is taken over by the rhombic
dodecahedron (Fig. 10). As the volume fraction is raised,
each drop flattens against its 12 neighbors. This process has
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Figure 6 Disordered, monodisperse 2-D system (Φ=1) with periodic boundaries; each shade corresponds to drops with a certain number
of sides, e.g., the unshaded drops all have 6 sides. (Courtesy of T. Herdtle and A.M. Kraynik.)

Figure 7 Computer-generated polydisperse 2D system (Φ = 1)
with periodic boundaries. (From Ref. 42, with permission from
Taylor & Francis Ltd.)
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been described by Lissant (4, 5), who considered the drop
to be transformed into a truncated sphere and each film to
be circular, at least until it reaches the sides of the diamond
faces (Fig. 11). This is incompatible with a zero contact
angle at the film edge. Moreover, at constant drop volume,
this model would imply decreasing capillary (and osmotic)
pressure with increasing Φ, which is clearly inconsistent. In
reality, the problem is much more complicated; the drop
cannot remain spherical and the films must be noncircular.
Using Brakke’s now-famous “Surface Evolver” computer
software (47), Kraynik and Reinelt (48), and Lacasse et al.
(49) have correctly and accurately solved this problem for
this and other structures (see below).

As suggested already by Lissant (4, 5), the packing is
likely to change above some critical value of Φ. It is clear
that, if the dodecahedral packing were to persist up to Φ =
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Figure 8 (a) Simplest case of bimodal 2-D system; (b) more
highly disordered, polydisperse hexagonal 2-D system (Φ= 1).
The cluster of darkly outlined drops forms the repeating unit.
(Courtesy of A.M. Kraynik. Similar structures appear in Ref. 44.)

Figure 9 Recipe for creating polydisperse hexagonal system from
perfectly ordered 2-D system; total surface energy remains un-
changed.

Figure 10 Spheres in hexagonal close packing (fee), each occup-
ing a rhombic dodecahedron. (From Ref. 4, with permission from
Academic Press.)

Figure 11 Each drop flattens against its neighbors as the volume
fraction increases; a stable thin film of continuous phase separates
neighboring drops. (From Ref. 4, with permission from Academic
Press.)
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1, Plateau’s second law would be violated at six of the 14
corners of the polyhedron, since eight linear borders would
converge there, rather than the mandatory four. Lissant pro-
posed that the structure changes to a body-centered cubic
(bcc) packing of planar tetrakaidecahedra (truncated octa-
hedra; see Fig. 12a). However, such a structure satisfies nei-
ther of Plateau’s laws. In this dry-foam regime, Kelvin’s
“minimal tetrakaidecahedron” (Fig. 12b), which is obtained
by slight distortion of its planar counterpart, solves this
problem and has long been considered as the most satisfac-
tory candidate for the drop shape. It has six planar quadri-
lateral faces, eight nonplanar hexagonal faces of zero mean
curvature, and 36 identical curved edges. In a space-filling
ensemble of such polyhedra, Plateau’s first and second laws
are fully satisfied. Kelvin derived approximate expressions
for the shape of the hexagons and the sides (50-52). Based
on that model, Princen and Levinson (53) calculated the
length of the sides, and the surface areas of the quadrilateral
and hexagonal faces, relative to those of the parent planar
tetrakaidecahedron of the same volume. They arrived at the
following result for the increase in surface area as a spher-
ical drop transforms into a Kelvin tetrakaidecahedron of
the same volume:

Kelvin’s polyhedron would indeed represent the ideal
drop shape in the dry-foam limit by effecting, in Kelvin’s
own words, “a division of space with minimum partitional
area,” if he had added the proviso that this division is to be
accomplished with identical cells. It has been proven by
Weaire and Phelan (55) that at least one structure of even
lower energy exists, if this restriction is lifted. The Weaire-
Phelan structure (Fig. 13), whose surface area is about
0.34% lower than that of Kelvin’s (i.e., S1/S0 = 1.0936),
has repeating units that contain eight equal-volume cells:
two identical pentagonal dodecahedra and six identical
tetrakaidecahedra that each have 12 pentagonal and two
hexagonal faces. The pressure in the dodecahedra is slightly
higher than that in the tetrakaidecahedra. Perhaps surpris-
ingly, neither the Kelvin nor the Weaire-Phelan structure is
rarely, if ever, encountered in actual, monodisperse foams
(3). The reason for this may lie in small deviations from
monodispersity or, more likely, in the disturbing effects of
the container walls, as alluded to already in connection with
2-D foams. Alternatively, as the continuous phase is re-
moved from between the initially spherical drops in fee
packing, slight irregularities in this drainage process may
force the system to get trapped in a less-ordered structure
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(This compares to values of 1.0990 for the planar
tetrakaidecahedron; 1.1053 for the rhombic dodecahedron;
and 1.0984 for the regular pentagonal dodecahedron. The
latter - though often considered as a unit cell in foam mod-
eling - is not really a viable candidate either, as it not only
violates Plateau’s laws but is also not space filling.)

More recently, Reinelt and Kraynik (54) have carried out
more exact numerical calculations on the Kelvin cell, lead-
ing to the slightly higher value of

Figure 12 (a) Planar tetrakaidecahedron (or truncated octahedron);
(b) Kelvin’s minimal tetrakaidecahedron (bcc).

Figure 13 Unit cell in Weaire-Phelan structure, containing two
pentagonal dodecahedra and six tetrakaidecahedra, each having
12 pentagonal and two hexagonal faces. (Courtesy of A.M.
Kraynik.)
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that may be at a local surface area minimum but is sepa-
rated from the lower-energy Kelvin and Weaire-Phelan
structures by a significant barrier [cf. the difficulty one en-
counters in trying to build a 15-bubble cluster that has a
Kelvin polyhedron at its center (56)].

Kraynik and Reinelt (48) and Lacasse et al. (49) have
accurately computed the changes in surface area as a drop
transforms from a sphere into a regular dodecahedron (fee)
or a Kelvin cell (bcc) with increasing volume fraction,
while maintaining zero contact angle. Expressed in terms
ofS/S0, the results are shown in Fig. 14. The Kelvin struc-
ture is internally unstable below Φ≈ 0.87. The results fur-
ther indicate that the Kelvin cell becomes the more stable
structure above Φ≈ 0.93. Also indicated is the limiting law
for Φ → 1 for the dodecahedron. In that regime, linear
Plateau borders of constant cross-section run along the
edges of the polyhedron. Their volumes and surface areas
can be evaluated as a function of Φ, while the volumes and
surface areas of the tetrahedral borders become negligible.
For the rhombic dodecahedron (22) this leads to

Kraynik and Reinelt (48) also evaluated the all-impor-
tant osmotic pressure n(0), which, for 3-D structures, is
given by [cf. Eq. (16)]:
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Figure 14 Scaled surface areas as a function of volume fraction for
the rhombic dodecahedral (fee) and Kelvin structures (bcc). (From
data kindly provided by A.M. Kraynik and D.A. Reinelt.)

where R is the radius of the initially spherical drops, or

For the dodecahedron, the appropriate limiting law for Φ →
1 is given (22) by

Figure 15 shows ∏(Φ) for the dodecahedron and Kelvin
cell.

Detailed numerical calculations have been carried out
by Bohlen et al. (57) for the transition of mono-disperse
spheres in simple cubic packing (Φ0= 0.5236) to cubes (Φ
= 1), for both zero and finite contact angles. Unfortunately,
although the results are interesting, this kind of packing is
not realistic for foams and emulsions, and will not be dis-
cussed further.

Figure 15 Reduced osmotic pressure as a function of volume frac-
tion for the rhombic dodecahedral and Kelvin structures. (From
data kindly provided by A.M. Kraynik and D.A. Reinelt.)
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D. Polydisperse, 3-D Systems

This is, of course, the system of greatest interest from a
practical point of view. The detailed structure is exceed-
ingly complex. As mentioned above, even the value of Φ0
is not precisely defined and is expected to depend some-
what on the details of the size distribution. Nevertheless,
there is clear experimental evidence (21, 22) that Φ0 is
close to - or slightly smaller than -0.7405 for “typical”,
polydisperse, unimodal emulsions.

In the dry-foam limit, each polyhedral drop must satisfy
Euler’s formula, i.e.,

Although R32 can be readily measured for any practical
system, the complex geometry does not allow evaluation
of S(Φ)/S0 and ∏(Φ) from first principles. Instead, in the
next section we shall show how these and other important
functions can be derived from experiment.

V. UTILITY AND EXPERIMENTAL
EVALUATION OF OSMOTIC PRESSURE

We have repeatedly emphasized the importance and utility
of the osmotic pressure ∏ of foams and concentrated emul-
sions. Once known as a function of 0, it may be used quan-
titatively to link and predict a large number of other
important properties. Some of these are listed below. In ad-
dition, these considerations lead to a convenient method for
evaluating n(0) experimentally (see subsection D below).

A. Motion of Continuous Phase Between
Different Systems in Contact

Let two concentrated dispersions with the same type of
continuous phase (e.g., an aqueous foam and an O/W emul-
sion, or two different O/W emulsions) be brought into con-
tact, either directly or via a freely movable semipermeable
membrane. If the osmotic pressures are unequal (e.g., as a
result of differences in the volume fractions, mean drop
size, interfacial tension, or combinations thereof), it is ob-
vious that the (common) continuous phase will flow from
the dispersion with the lower osmotic pressure into that
with the higher osmotic pressure until the two pressures are
equalized. The final volumes and volume fractions of the
two dispersions may be predicted in a straightforward man-
ner, once ∏(Φ) is known. It is important to point out that
equality of the (mean) capillary pressures does not neces-
sarily rule out flow, nor does their inequality imply it.

B. Vapor Pressures of Continuous and
Dispersed Phases

It can be shown (27) that the vapor pressure, pC
v, of the

continuous phase is reduced to below that of the bulk con-
tinuous phase, (pC

v)0, according to
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where v is the number of vertices, e is the number of edges,
and f is the number of faces. For an infinite number of
space-filling polyhedra that are subject to Plateau’s rules, a
number of statistical relationships can be derived from Eq.
(29) (58-60). Perhaps the most interesting of these is

where (f) is the average number of faces per cell, and (e) is
the average number of edges per face. Equation (30) is con-
sistent with what is expected for a monodisperse “Kelvin
foam”, where (f)=f =14 and (e) = (6 × 4 + 8 × 6)/14 = 5.143,
or a Weaire-Phelan structure, where (f) - (2 × 12 + 6 × 14)/8
= 13.5 and (e) = [2 × 12 × 5 + 6 × (12 × 5 + 2 × 6)]/108 =
5.111. As mentioned before, Matzke (3) found that, in a real,
supposedly monodisperse foam, Kelvin’s polyhedra did not
occur and that pentagonal faces were predominant. He
found that (f) = 13.70 and (e) = 5.124 which is again con-
sistent with Eq. (30). For a real polydisperse dry foam,
Monnereau and Vignes-Adler (61) found (f) = 13.39 ±0.05
and (e) = 5.11, again in close agreement with Eq. (30).
These authors did not encounter any Kelvin cell (or Weaire-
Phelan structure) either.

For Φ0 < Φ < 1, the drops go through a complex transi-
tion from spheres to pure polyhedra. In this most general
system, the osmotic pressure is given by

where R32 is the surface/volume or Sauter mean radius of
the initially spherical drops:

where 2 is the partial molar volume of the solvent,
is the gas constant, and T is the absolute temperature.
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Similarly, the vapor pressure of the dispersed phase, pd
v,

in a concentrated emulsion can be related to that of the bulk
dispersed phase, (pd

v)0 by

purely polyhedral shape and Φ � 1. It is clear that, at any
level, the combined buoyant force of all underlying drops
per unit area must equal the local osmotic pressure:
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where σ is the interfacial tension, R32 is the Sauter mean

drop radius, 1 is the molar volume of the dispersed liquid,
and S/S0 is the relative increase in surface area at the vol-
ume fraction Φ. For Φ <Φ0, where S/S0= 1, we recover a
variant of Kelvin”s equation; for Φ >Φ0, the increased
vapor pressure is augmented further by the appearance of
the factor S/S0 in the exponent, with S/S0 being related to
ẋ(Φ) through Eq. (31).

C. Gradient in φφ in Gravitational Field 

So far, we have assumed that gravity is absent or negligible,
so that the volume fraction is uniform through-out the sys-
tem. In gravity, however, a sufficiently tall column will de-
velop a significant gradient in Φ (22). Even if each
individual drop is small enough to be essentially unaffected
by the field, i.e., when the Bond number is very small, the
combined buoyant force of the underlying drops causes in-
creasing drop deformation (and volume fraction) in the
higher regions (Fig. 16). At the boundary between the dis-
persion and the bulk continuous phase, where z = 0, we
have Φ =Φ0, the drops are purely spherical. At higher z,
they increasingly deform until, as z→ ∞, they acquire a

Figure 16 Transition from spherical to polyhedral drops in vertical
column. [From Ref. 38. Copyright (1986) American Chemical So-
ciety.] 

where ∆ρ is the density difference between the phases, g is
the acceleration due to gravity, and <~?~[$$]>(Φ) is the re-
duced osmotic pressure:

and is the reduced height:

where αc =[σ/(∆ρ.g)]1/2 is the capillary length.
In all the above it is assumed that there is no gravitational
segregation by drop size, i.e., the drop size distribution does
not vary with height.
Thus, once (φ) is known, φ can be evaluated from Eq.
(36) in the form:

As mentioned earlier, the only system for which (φ) is
known exactly is the monodisperse 2-D system [cf. Eq.
(16)]. When Eq. (39) is applied to this case, we find

where φ0 = 0.9069. This result has been obtained also by
Pacetti (62). The volume fraction profile is shown in Fig.
17.

D. Experimental Determination of (f) for
Real Systems 

From the above, it is clear that (φ) may be evaluated ex-
perimentally from Eq. (36) by determining the volume frac-
tion as a function of height in an equilibrated, i.e.,
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completely drained, dispersion column. This has been done
very carefully for a typical, well-characterized polydisperse
emulsion of paraffin oil in water (22). The emulsion had a
Sauter mean drop radius of R32 = 44.7 µm, an interfacial
tension of 7.33 mN/m, and a density difference of 0.144
g/cm3. The experimental profile φ is given in Fig. 18 and
may be compared with that in Fig. 17 for the mono-disperse
2-D system. It could be numerically fitted to the following
equations, covering three different ranges of φ.

“Low” volume fraction (0.715 < φ< 0.90 or 0 < <
0.5):
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Figure 17 Volume fraction vs. reduced height for perfectly ordered
2-D case.

Figure 18 Experimental profile of volume fraction vs. reduced
height for typical polydisperse emulsion. (From Ref. 22. Copy-
right (1987) American Chemical Society.) 

This leads to

which, upon substitution for according to Eq. (41), leads
to (φ). Equation (41) shows that φ = φ0 = 0.715 at = 0.
This is one of our reasons for concluding that typical poly-
disperse systems pack slightly less tightly than ideally
close-packed monodisperse systems, where φ0 = 0.7405.
Intermediate volume fraction (0.90 < φ < 0.99 or 0.5 <φ <
4.0):

High volume fraction (0.99 < φ < 1 or 4.0:

which is the appropriate limiting solution for the polyhedral
system.

Equations (42), (43), (45), and (46) describe the depend-
ence of on φ, as shown in Fig. 19. It may be compared
with that for the monodisperse 2-D and 3-D systems in Figs
5 and 15, respectively. Close examination shows that the
experimental osmotic pressure is consistently lower than
those for the idealized structures in Fig. 15.

Even though these relationships were derived for one
particular emulsion, its size distribution was “typical”, so
that we believe that they can be applied with reasonable
confidence in most practical situations. Nevertheless, more
work remains to be done to elucidate the effect of the details
of the size distribution. There is a particular need for the
equivalent expressions for the monodisperse system, which
would serve as a benchmark. Bibette’s (63) novel way of
preparing emulsions of low polydispersity (±10% in radius)
has opened up experimentation along these lines. Unfortu-
nately, the technique appears to be capable only of gener-
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ating emulsions of extremely small drop size (R < 1 µm),
which complicates matters in several ways. First, estimates
of the effective volume fractions [cf. Eq. (1)] become ques-
tionable, unless detailed quantitative information is avail-
able on the equilibrium film thickness as a function of the
apparent volume fraction (or capillary pressures). This is
usually not the case, potentially leading to significant er-
rors. Secondly, droplets of such small size are Brownian,
which may lead to an entropic contribution to the osmotic
pressure, in addition to the energetic contribution consid-
ered so far. These and other factors may be responsible for
some of the differences between the above results and those
of Mason et al. (64), who measured <~?~[$$]>(Φ) for an
oil-in-water “Bibette emulsion” of R = 0.48 µm. To cover
the whole range of Φ, they used three different ways to gen-
erate the osmotic pressure: gravitational compaction, cen-
trifugation, and dialysis of the emulsion against the
continuous phase containing various levels of dextran, a
polymer to which the dialysis membrane is impermeable.
The osmotic pressure was found to rise at an estimated ef-
fective Φ of (Φ0)e≈0.60 (rather than 0.715). This is close to
0.64, the value for random close packing of uniform
spheres. Up to Φe = 0.80, the data could be fitted well to

For φ > 0.80, the results of the two studies appear to be
quite consistent, in spite of the disparity in the degree of
polydispersity of the emulsions employed. The apparent
discrepancy at the lower volume fractions may be entirely
the result of the large difference in mean drop size, for the
reasons cited above.

E. Gravitational Syneresis or Creaming 

In the absence of gravity (or with fluids of matched densi-
ties), a perfectly stable emulsion or foam with φ > φ0 will
remain uniform and not “phase separate”, i.e., it will not
exude a bottom layer of continuous phase. In a gravitational
(or centrifugal) field such syneresis may occur, however,
as a result of compaction in the upper region (assuming that
we are dealing with a foam or O/W emulsion; continuous
phase would separate at the top in W/O emulsions). In a
consumer product, such behavior could be detrimental, as
it might suggest instability, breakdown, and limited shelf-
life, even though simple shaking would restore (temporary)
uniformity. With the knowledge contained in the previous
subsection, it is possible to predict exactly when such
syneresis will in fact occur (65). For a container of constant
cross-section, the parameters of importance are the overall
volume fraction, φ, and the reduced height of the sample,
, defined by
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Figure 19 Reduced osmotic pressure as a function of volume frac-
tion for typical polydisperse emulsion. [From Ref. 22. Copyright
(1987) American Chemical Society.]

where H is the actual height of the sample. It is clear that,
for any , there must be a critical reduced sample height,

cr, above which syneresis will occur and below which it
will not. From a material balance and Eq. (36), it is readily
shown that cr must obey the condition:

Figure 20 shows how the resulting - diagram is bisected
by cr( ). Reference 65 provides procedures for deter-
mining the height of the separated layer of continuous
phase, if any, as well as the precise variation of φ with
height in the sample. The method may be extended to con-
tainers with varying cross-section (65). The following gen-
eral conclusions may be drawn: (1) everything else being
equal, syneresis is less likely the higher the overall concen-
tration of the dispersed phase, ; of course, when <φ0,
syneresis will always occur;
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Figure 20 Critical sample height for occurrence of syneresis as a
function of overall volume fraction. 

(2) for given (>Φ0), the tendency toward syneresis is less
pronounced the smaller , i.e., for small drop size, high
interfacial tension, small density difference, and small sam-
ple height [cf. Eq. (47)]; and (3) for a foam or typical O/W
emulsion, the tendency toward syneresis is reduced if the
container is shaped with its widest part at the bottom. The
reverse is true for typical W/O emulsions.

F. Increase in Specific Surface Area with φφ

We have seen that the osmotic pressure is directly linked
to the scaled specific surface area, S/S0, as φ increases from
φ0 through Eq. (31). For the monodisperse 2-D system,
S/S0 is given by Eq. (13) and is plotted in Fig. 3.

To the extent that the real emulsion studied in Ref. 22 is
representative of typical polydisperse, 3-D systems, one can
derive S/S0 from the expressions for (φ) in Section V.D.
The results (22) are

For 0.715 < φ< 0.90:

The combined results are shown in Fig. 21, where it is seen
that the transition from spheres to completely developed
polyhedra is accompanied by an increase in surface area of
8.3%. As mentioned above, for the monodisperse case one
predicts an increase in surface area of 9.7% on the basis of
Kelvin’s polyhedron as the ultimate drop shape, or 9.4%
for the Weaire-Phelan structure. Polydispersity appears to
give rise to an even somewhat smaller overall change in
surface area. Recent computer simulations of various
monodisperse and polydisperse structures by Kraynik et al.
(66) confirm this result almost quantitatively.

G. Surface Area in Films versus Total
Surface Area 

At any given volume fraction φ, a fraction Sf/S of the total
surface area forms part of the films separating the droplets,
while the remainder is still “free” in the Plateau borders
(Sf/S = 0 at φ = φ0; Sf/S = 1 at φ → 1). This parameter may
play an important role in problems relating to the stability
of, and mass transfer in, such systems. We have shown (27)
that
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where S/S0 is given by Fig. 21, andfφ) is the fraction of a
confining wall that is “contacted” by the flattened parts of

Figure 21 Scaled specific surface area as a function of volume
fraction for typical polydisperse emulsion. [From Ref. 22. Copy-
right (1987) American Chemical Society.] 
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the drops pushing against it, under the assumption that the
wall is perfectly wetted by the continuous phase. This frac-
tion, which varies from f = 0 at φ0 to f = 1 at φ = 1, can be
measured experimentally (67) and was found empirically to
be given by

following section, where we describe the only properties
that are unique to foams as a result of the compressibility
of their dispersed phase.

VI. FOAMS: INTERNAL PRESSURE,
EQUATION OF STATE, AND
COMPRESSIBILITY 

Up to this point we have emphasized the common structural
and other properties of concentrated emulsions and foams.
However, because of their gaseous dispersed phase, foams
are compressible and, just as gases themselves, can be char-
acterized by an equation of state that relates their volume,
external pressure, and temperature.

A. Dry-Foam Limit ( φ = 1) 

For a polydisperse dry foam one can define an average in-
ternal pressure ; that is given by
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for φ0 < φ < 0.975. (By solving for φ at f = 0, we again ob-
tain evidence that φ0 ≈ 0.72 for real, polydis-perse systems.)
For 0 > 0.975, we expect that f(φ) is given, to a good ap-
proximation (38), by

Combining Eqs (53) and (54) with Eq. (52) leads to the ap-
proximate dependence of Sf/S on φ as shown in Fig. 22.

These are just some of the examples of where and how
the osmotic pressure, or its related properties, can be used
to define the overall equilibrium behavior of these complex
fluids, even though their detailed microscopic structure may
not be fully known. Other exampies are to be found in the

Figure 22 Fraction of total surface area contained in films as a
function of volume fraction for typical polydisperse emulsion.
Solid curve at right is limiting solution for fee; the dashed curve
connects it to the lower experimental region. [From Ref. 27. Copy-
right (1988) American Chemical Society.]

where pi and vi are the pressure and volume of bubble i,
and V is the total foam volume. Derjaguin (68) has shown
that

where P is the external pressure and S1/V is the specific
surface area of the foam. Assuming ideality of the gas
phase, this leads to the equation of state:

where n is the number of moles of gas in the foam. The
same results were later obtained by Ross (69).

Morrison and Ross (70) have indicated that, while Eqs
(56-57) are undoubtedly correct for monodisperse foams, a
rigorous proof of their validity for polydisperse systems
was lacking. Such proof has since been provided by
Hollinger (71), Crowley (72), and Crowley and Hall (73).

Derjaguin further showed (68) that the compression
modulus K is given by
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which compares to K = P for a simple ideal gas.
The specific surface area in Eqs (56-58) may be replaced

by

VII. MECHANICAL AND RHEOLOGICAL
PROPERTIES 

It has long been realized that the crowding of deformable
drops and bubbles in concentrated emulsions and foams
gives rise to interesting mechanical and rheological proper-
ties, not shown by the separate constituent fluid phases.
When subjected quasistatically to a small stress, these sys-
tems respond as purely elastic solids, characterized by a
static elastic modulus, G. Under dynamic conditions, the
modulus has a real, elastic component (the storage modu-
lus, G’) and a complex, viscous component (the loss mod-
ulus, G”). Once a critical or yield stress is exceeded, the
systems flow and behave as viscoelastic fluids, whose ef-
fective viscosity decreases from infinity (at the yield stress)
with increasing shear rate. Thus, in rheological terms, they
are plastic fluids with viscoelastic solid behavior below,
and viscoelastic fluid behavior above, the yield stress.

A number of early experimental studies have provided
qualitative evidence for some or all of these behavioral as-
pects (e.g., 4, 74-80), but the techniques employed were
usually crude and/or the systems were poorly characterized,
if at all. This makes it impossible to use these early exper-
mental data to draw conclusions as to the quantitative rela-
tionships between the rheological properties on the one
hand, and important system variables, such as volume frac-
tion, interfacial tension, mean drop size (and size distribu-
tion), fluid viscosities, shear rate, etc., on the other. In the
last decade or so, interest in this area has intensified and
much progress has been and is being made along several
fronts: theoretical modeling, computer simulation, and
careful experimentation. For other recent, though by now
somewhat outdated, reviews, see Refs 81-84.

A. Theoretical Modeling and Computer
Simulation 

In view of the exceedingly complex structure of 3-D sys-
tems - even when monodisperse - initial efforts were con-
fined almost exclusively to their 2-D analogs. Although
unrealistic in some ways, these models provide important
kinematic insights and their behavior may be extrapolated,
with caution and limitations, to real systems. At first, for
the sake of mathematical tractability, the complexity was
reduced even further by considering perfectly ordered,
monodisperse 2-D systems. Gradually, the degree of com-
plexity has been increased by allowing disorder. It is only
very recently that some intrepid investigators have begun to
tackle the 3-D problem in earnest.
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where, as before, R32 is the Sauter mean bubble radius, and
S1≈.083 is the increase in surface area associated with the
transition from spherical to polyhedral bubbles at equal vol-
ume.

B. Foams with Finite Liquid Content (φ< 1) 

We have shown (27) that, for this general case, Eqs (56-58)
are to be modified as follows:

where ∏ is the osmotic pressure, V1 is the volume of the
dispersed gas phase, and V is the total foam volume (V1
=φV). For Φ=1, Eqs (56-58) are recovered.
Equations (60-62) may be written in the form:

where is the reduced osmotic pressure. The terms within
the round brackets depend on φ only and can be evaluated
from the data presented above. It may be shown (27) that
the “osmotic” terms, while significant, provide only a rather
small correction (<6%) to the dominant “Derjaguin terms”
in S/S0. Of perhaps trivial but greater significance is the
correction for the volume fraction outside the brackets of
Eqs (61), (62), (64), and (65).
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1. Elastic and Yield Properties: Shear Modulus
and Yield Stress

a. Two-dimensional Systems 

For the perfectly ordered case, the unstrained equilibrium
structure has been discussed above. The (cylindrical) drops
are arranged on a perfectly ordered hexagonal lattice, dec-
orated at its vertices with Plateau borders, whose wall cur-
vatures are determined by the drop size and volume fraction
according to Eq. (11). The system can be thought to be con-
fined between two parallel plates, with rows of drops being
forced to align with the plates. As one of the plates is now
moved within its own plane to induce shear, all drops re-
spond by being deformed identically. In the process the sur-
face area increases. With the assumption of constant
interfacial tension, this results in a force (stress) versus de-
formation (strain) behavior that has been analyzed in detail,
using straightforward geometrical arguments, by Princen
(85) for any value of φ ≥ φ0. The simplest, dry-foam case
of φ = 1 has been considered independently by
Prud’homme also (86).

The sequence of events in the dry-foam limit is illus-
trated in Fig. 23 for a single unit cell, i.e., the parallelogram
formed by the centers of four adjacent drops. As the cell is
strained at constant volume, the angle between the films
must remain at 120°, which causes the central film to
shorten until its length shrinks to zero. At that point, four
films meet in a line. The resulting instability resolves itself
by a rapid so-called Tl rearrangement or “neighbor switch-
ing”. In the process, new film is generated from the center
to restore the original, unstrained configuration. A different,
perhaps clearer, view of the system as it moves through
such a cycle is shown in Fig. 24. At any stage, the stress
per unit cell is given by the horizontal component of the
tension of the originally vertical films, i.e.,
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where ψ is the angle between these films and the horizontal
shear direction. The resulting stress-strain curve per unit
cell is given by curve #8 in Fig. 25, where is the dimen-
sionless stress per unit cell.

Khan and Armstrong (43, 87, 88), using a slightly different
analysis, arrived at the following simple analytical result
for curve #8:

Figure 23 Shear deformation of unit cell of perfectly ordered 2-
D system in dry-foam limit (Φ = 1); the transition from (c) to (d)
is rapid and is often referred to as a Tl rearrangement or neighbor
switching. (From Ref. 85, with permission from Academic Press.)

Figure 24 Alternative view of shear strain cycle. (From Ref. 85,
with permission from Academic Press.)
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where γ is the imposed strain, which varies from zero to
2/√3 at the point of instability. The cycle then repeats itself.

When φ < 1, the situation is considerably more compli-
cated (Fig. 26). As long as the two Plateau borders within
the unit cell remain separated (“Mode I”), the stress/unit
cell is unaffected. However, beyond a given strain, which
depends on φ, the Plateau borders merge to form a single,
four-sided border. In this “Mode II” regime, the films no
longer meet at 120౨, and the stress/strain curve deviates

from that for the dry-foam limit. It passes through a (lower)
maximum and ultimately reverses sign, either continuously
or via a Tl rearrangement (85). The resulting curves are col-

lected in Fig. 25. In each case the maximum max corre-
sponds to the static yield stress/unit cell. It is plotted in Fig.
27 as a function of φ, together with the corresponding yield
strain. Realizing that there are 1/a√ 3 unit cells per unit of
length in the shear direction and that a may be expressed in
terms of the more practical drop radius R and volume frac-
tion φ, one finds for the stress (ι)/strain (γ) relationship:

while the yield stress, ι0, is given by
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Figure 25 Shear stress per unit cell vs. shear strain for perfectly or-
dered 2-D system at different volume fractions. (From Ref. 85,
with permission from Academic Press.) 

Figure 26 Increasing strain for systems with 0.9069 < Φ < 1. Be-
tween (a) and (b), system is in Mode I; between (b) and (c), system
is in Mode II. (From Ref 85, with permission from Academic
Press.) 

where max(φ) may be read from Fig. 27. It is expected to
start deviating from zero when adjacent layers of close-
packed drops or bubbles can freely slide past each other,
i.e., at φ = π/4 = 0.7854.

The small-strain, static shear modulus, G, is defined as

and can be obtained from Eqs (69) and (68):

The model predicts zero shear modulus for φ < φ0.
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Figure 27 Static yield stress per unit cell and yield strain as a
function of volume fraction for perfectly ordered 2-D system.
(From Ref. 85, with permission from Academic Press.) 

Both the yield stress and the shear modulus scale with
σ/R but, while the yield stress increases strongly with vol-
ume fraction, the shear modulus is affected only very
weakly through φ1/2. In the dry limit of φ=1, both reach
identical limiting values of

that the yield stress is sensitive to the orientation. In addi-
tion, they considered planar extension, as well as shear.

The sudden jump of the shear modulus from zero to a
finite value at φ0 and its subsequent weak sensitivity to φ
for φ > φ0 are rather peculiar and appear to be associated
with the perfect order of the model. The pure cyclical char-
acter of the stress/strain curves is -by itself - a symptom of
“perfection pathology”. As discussed below, real systems
do not exhibit these particular features, since they are in-
variably disordered, which causes Tl rearrangements to
occur even at very small strains, as well as randomly
throughout the system, rather than simultaneously at all
vertices.

The shear modulus of polydisperse hexagonal systems
of the type depicted in Fig. 8b is still given by Eq. (72)
when R is replaced by Rav = (∑ R2

i/n)1/2characteristic
drop radius that is based on the average drop area (44).
However, as expected, the “elastic limit”, i.e., the stress and
strain where the first Tl rearrangement occurs, is reduced
relative to that of the mono-disperse case of the same vol-
ume fraction.

The elastic and yield properties of 2-D systems with the
most general type of disorder (cf. Fig. 7) have been simu-
lated by Hutzler et al. (90) for both dry and wet systems. In-
deed, as the number of polydisperse drops in the simulation
is increased, the jumps in stress associated with individual
or cooperative Tl rearrangements become less and less no-
ticeable. Instead, the stress increases smoothly with increas-
ing strain until it reaches a plateau that may be identified
with the yield stress. The yield stress was found to increase
sharply with increasing volume fraction, very much as in
the monodisperse case. Furthermore, the shear modulus for
the dry system (Φ=1) was essentially identical to that for
the monodisperse case, as given by Eq. (73) with Rav as
defined above, replacing R. Its dependence on 0 was very
different from that in Eq. (72), however. When expressed in
our terms, their results for 1 > Φ > 0.88 could be fitted to
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The analysis may be extended to systems, in which the
film thickness, h, or the contact angle, θ between the films
and the Plateau border walls are finite (85). The effect of a
finite film thickness is to increase the effective volume frac-
tion [cf. Eq. (1)], which raises the yield stress and shear
modulus in a predictable fashion. The effect of a finite con-
tact angle on the shear modulus is to simply reduce it by a
factor of cos θ. The effect on the yield stress is more com-
plex. In most but not all cases the yield stress is increased.
Furthermore, a finite contact angle can give rise to interest-
ing new instability modes and to hysteretic behavior. The
reader is referred to Ref. 85 for further details.

Subsequently, Khan and Armstrong (87, 88) and Kraynik
and Hansen (89) considered the effect of the orientation of
the unit cell, relative to the shear direction, for the dry-foam
case. They found that the shear modulus is unaffected, but

Assuming that this relationship continues to hold for φ <
0.88 (where their simulations ran into difficulties because
of the large number of Tl processes the program had to deal
with), the authors concluded that G reaches zero at φ = φ0
≈ 0.84. As mentioned earlier, this “rigidity-loss transition”
can be identified as the random close packing of hard disks.
The drop in G with decreasing φ could further be correlated
with the average number of sides of the Plateau borders,
which gradually increased from three close to φ = 1 to about
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four at Φ = 0.84. Although these simulations involved a
rather small number of drops and leave some questions
unanswered, they do indicate a type of elastic behavior that
- as we shall see later - much more closely reflects that of
real systems. Clearly, disorder plays a critical role.

b. Three-dimensional Systems 

The first expression for the shear modulus of random dry
foams (and emulsions) was derived by Derjaguin (91). It is
based on the assumption that the foam is a collection of ran-
domly oriented films of constant tension 2σ and negligible
thickness, and that each film responds affinely to the ap-
plied shear strain, as would an imaginary surface element
in a continuum. Evaluating the contribution to the shear
stress of a film of given orientation and averaging over all
orientations then leads to

Stam3enovic (94) analyzed the deformation of an ideal-
ized single foam vertex, where four Plateau borders meet
and concluded that
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where S1/V is the surface area per unit volume. Since
S1/V≈1.083S0/V = 3.25/R32, this may be written as

Much later, Stamenovic and Wilson (92) rediscovered Eq.
(75), using similar arguments but pointing out at the same
time that it probably represents an overestimate. Indeed,
using 2-D arguments, Princen and Kiss (93) concluded that
the affine motion of the individual films violates Kelvin’s
laws and leads to an overestimate of G by a factor of two,
at least in 2-D. (Kraynik, in a private communication,
pointed out an internal inconsistency in Ref. 93 and con-
cluded that G was overestimated by a factor of only 3/2.)
Furthermore, Derjaguin’s model does not allow for Tl re-
arrangements; it does not predict a yield stress, nor does it
have anything to say about the effect of Φ in “wet” systems.
On the other hand, the model correctly predicts that G
scales with σ/R.

As pointed out by Reinelt and Kraynik (54), however, the
idealized vertex does not adequately represent an equilib-
rium structure. Similar reservations apply to the work of
Budiansky and Kimmel (95), who considered the behavior
of an isolated foam cell in the form of a rectangular pentag-
onal dodecahedron and obtained a shear modulus between
the two above values.

Using Brakke’s surface evolver (47), Reinelt and
coworkers (54, 66, 96-100) have explored in detail the elas-
tic response of monodisperse, perfectly ordered structures,
both “dry” and “wet”, to extensional and shear strain. Struc-
tures considered included the rhombic dodecahedron, the
regular (“planar”) tetrakaideca-hedron, the Kelvin cell, and
the Weaire-Phelan structure. Some degree of disorder was
introduced by considering bidisperse Weaire-Phelan sys-
tems (101), in which the relative volumes of the dodecahe-
dra and tetrakaidecahedra were varied, as well as random,
though monodisperse, systems (66). As in the 2-D case, the
stress/strain behavior depends on the cell orientation rela-
tive to the strain direction. Because of the multitude of
edges and faces of each cell, a variety of Tl transitions may
occur at increasing strain, leading to very complex behav-
ior. Some of their results for the shear moduli of dry sys-
tems (φ=1) are listed in Table 1.

The ordered structures are all anisotropic, have cubic
symmetry, and can be characterized by two shear moduli,
G1 and G2. To simulate orientation disorder, the authors
introduced an “effective isotropic shear modulus”, Gav
=2/5G1 +3-5G2, which is obtained by averaging over all
orientations. The first three columns of Table 1 give the
moduli in units of 963;V-1/3, where V is the cell volume; the
last column in units of &3963;/R, where R = (3V/4π)1/3.
The orientation-averaged results are surprisingly close to

Table 1Shear Moduli of Dry Systems
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the 2-D prediction of G/�R-1 = 0.525 [cf. Eq. (73)], to Sta-
menovic’s prediction of G/σR-1 = 0.54 [cf. Eq. (77)], and
to the extrapolated experimental result of Princen and Kiss
(93) for polydisperse emulsions, which indicated that G/σ
R32

-1 = 0.509 (see below). The small influence of poly-dis-
persity is also suggested by the finding that Gav varies less
than 0.5% when the volume ratio of the two types of cells
in bidisperse Weaire-Phelan structures is varied between
0.039 and 2.392 (101).

Simulations of this type can pinpoint an “elastic limit”
where the first (or subsequent) Tl transition(s) take(s) place.
It depends extremely strongly on orientation, as does the
“dynamic yield stress”, i.e., the stress integrated over a
complete strain cycle. The relevance to the yield stress of
real disordered systems is, therefore, quite limited (98). As
in 2-D simulations, simulations on more highly disordered
systems will undoubtedly bring increased insight.

Simulations on “wet” rhombic dodecahedra and Kelvin
cells have been carried out by Kraynik and coworkers (66,
100). The effective isotropic shear moduli were found to
depend slightly on the volume fraction, but did not show
the linear dependence onφ - φ0 found experimentally for
disordered systems (93). Again, simulations on highly dis-
ordered wet systems should improve our understanding.

Buzza and Gates (102) also addressed the question
whether disorder or the increased dimensionality from two
to three dimensions is responsible for the observed experi-
mental behavior of the shear modulus. In particular, they
explored the lack of the sudden jump in G from zero to a fi-
nite value at φ = φ0 that is predicted by the perfectly or-
dered 2-D model. We have seen above that disorder appears
to remove that abrupt jump in two dimensions (90). For
drops on a simple cubic lattice, Buzza and Cates analyzed
the drop deformation in uniaxial strain close to φ = φ0, first
using the model of “truncated spheres”. (For reasons given
above, we believe this to be a very poor model.) They
showed that this model did not eliminate the discontinuous
jump in G. An exact model, based on a theory by Morse
and Witten (103) for weakly deformed drops, led to G α 1/
In (φ - φ0), which eliminates the discontinuity, but still
shows an unrealistically sharp rise at φ = φ0 and is qualita-
tively very different from the experimentally observed lin-
ear dependence of G on (φ - φ0). Similar conclusions were
reached by Lacasse and coworkers (49, 104). A simulation
of a disordered 3-D model (104) indicated that the droplet
coordination number increased from 6 at φ0 to 10 at φ =
0.84, qualitatively similar to what is seen in disordered 2-
D systems (90). Combined with a suitable (anharmonic) in-
terdroplet force potential, the results of the simulation were
in close agreement with experimental shear modulus and
osmotic pressure data. It therefore appears again that disor-

der is responsible for many of the features of real systems.

2. Shear Viscosity 

Compared to the quasistatic elastic and yield behavior of
concentrated emulsions and foams, the rate-dependent vis-
cous properties are even more complex and relatively un-
explored. Formally, the shear stress, r, may be expressed as
a function of the shear rate, y, as
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where ι0 is the (elastic) yield stress, and ιs (γ) is the contri-
bution from any rate-dependent dissipative processes; or,
in terms of the effective shear viscosity, µe,

The first term is, to a large extent, responsible for the shear-
thinning behavior of these systems. As is clear from the pre-
vious discussion, ι0 is determined primarily by σ, R, and φ,
while the size distribution may play a secondary role. The
dynamic stress, ιs, is expected to depend on these and other
variables, e.g., the shear rate, the viscosities of the contin-
uous and dispersed phases, and surface-rheological param-
eters. So far, the predictive quality of theoretical and
modeling efforts has been very restricted because of the
complexity of the problem.

Buzza et al. (105) have presented a qualitative discus-
sion of the various dissipative mechanisms that may be in-
volved in the small-strain linear response to oscillatory
shear. These include viscous flow in the films, Plateau bor-
ders, and dispersed-phase droplets (in the case of emul-
sions); the intrinsic viscosity of the surfactant monolayers,
and diffusion resistance. Marangoni-type and “marginal re-
generation” mechanisms were considered for surfactant
transport. They predict that the zero-shear viscosity is usu-
ally dominated by the intrinsic dilatational viscosity of the
surfactant mono-layers. As in most other studies, the dis-
cussion is limited to small-strain oscillations, and the rapid
events associated with Tl processes in steady shear are not
considered, even though these may be extremely important.

It is now generally recognized that surfactants are indeed
crucial, not only in conferring (meta)stability to the emul-
sion or foam, but also in controlling the rate-dependent rhe-
ology of the film surfaces and that of the system as a whole.
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Several early, spatially periodic 2-D models neglected this
aspect and made other simplifying assumptions. Khan and
Armstrong (43, 87, 88) and Kraynik and Hansen (106) as-
sumed that all the continuous phase resides in the films (i.e.,
there were no Plateau borders) and that there is no exchange
of fluid between the films. The film surfaces were assumed
to be completely mobile (no surfactant!). When such a sys-
tem is strained globally, the uniform films respond with
simple planar extension (or compression) at constant vol-
ume. This mechanism predicts significant structural
changes, but leads to viscous terms in Eqs (78) and (79)
that are insignificant compared with the elastic terms up to
extremely high shear rates that are unlikely to be encoun-
tered in practice. Experimentally, one finds a much more
significant contribution (see below).

A more complete 2-D analysis of simple shear is that of
Li et al. (107). It solves the detailed hydrodynamics in the
drops, films, and Plateau borders for the case of equal vis-
cosities of the continuous and dispersed phases. Again,
large structural changes are predicted. However, surfactants
(and surface tension gradients) are assumed to be absent,
which severely limits the practical implications of the
analysis. An interesting conclusion is that, under certain
conditions, shear flow can stabilize concentrated emulsions,
even in the total absence of surfactants.

An approach that is almost diametrically opposed to the
earlier models of Khan and Armstrong, and Kraynik and
Hansen, was advanced by Schwartz and Princen (108). In
this model, the films are negligibly thin, so that all the con-
tinuous phase is contained in the Plateau borders, and the
surfactant turns the film surfaces immobile as a result of
surface-tension gradients. Hydrodynamic interaction be-
tween the films and the Plateau borders is considered to be
crucial. This model, believed to be more realistic for com-
mon sur factant-stabilized emulsions and foams, draws on
the work of Mysels et al. (109) on the dynamics of a planar,
vertical soap film being pulled out of, or pushed into, a bulk
solution via an intervening Plateau border. An important re-
sult of their analysis is commonly referred to as Frankel’s
law, which relates the film thickness, 2h∞, to the pulling
velocity, U, and may be written in the form:

given by capillary hydrostatics, r = (σ/2pg)1/2, where ρ is
the density of the liquid; and g is the gravitational acceler-
ation.

Frankel’s law has its close analogs in a number of related
problems (110-112) and has been verified experimentally
(113, 114) in the regime where the drawn-out film thick-
ness, 2h∞, is sufficiently large for disjoining-pressure ef-
fects to be negligible. Below some critical speed, the
thickness of the drawn-out film equals the finite equilib-
rium thickness, 2heq, which is set by a balance of the dis-
joining pressure, ∏d(h), and the capillary pressure, σ/r,
associated with the Plateau border. Thus, Frankel’s law, and
the following analysis, apply only as long as 1pCa2/3peq/r.
It is expected to break down as the capillary number ap-
proaches zero. Disjoining pressure effects may, in principle,
be included (e.g., 115) but at the expense of simplicity and
generality of the model.

The interesting hydrodynamics and the associated vis-
cous-energy dissipation are confined to a transition region
between the emerging, rigidly moving film and the macro-
scopic Plateau border. The lubrication version of the Stokes
equation may be used in this region, as the relative slope of
the interfaces remains small there.

It is reasonable to assume that the same basic process
operates in moving emulsions and foams. Lucassen (116)
has pointed out that, for such systems to be stable to defor-
mations such as shear, the dila-tional modulus of the thin
films must be much greater than that of the surfaces in the
Plateau border. However, this is equivalent to the assump-
tion of inex-tensible film surfaces that underlies Frankel’s
law. Therefore, it may well be that, by implication, emul-
sions and foams that are stable to shear (and we are inter-
ested in such systems only) have the appropriate surface
rheology for Frankel’s law to apply. Of course, in emulsions
and foams, each Plateau border of radius r (set by drop size
and volume fraction) is now shared by three films. At any
given moment, one or two of the films will be drawn out of
the border, while the other(s) is/are pushed into it, at re-
spective quasisteady velocities U(t) that are dictated by the
macroscopic motion of the system (Fig. 28). Using a per-
fectly ordered 2-D system, Schwartz and Princen (108)
considered a periodic uniaxial, exten-sional strain motion
of small frequency and amplitude, so that inertial effects
are negligible, and complications due to merger of adjacent
Plateau borders and associated rapid Tl processes are
avoided. They proceeded by calculating the instantaneous
rate of energy dissipation in the transition region of each
of the three films associated with a Plateau border, and in-
tegrated the results over a complete cycle. When the effec-
tive strain rate is related to the frequency of the imposed
motion, the result can be expressed as an effective viscosity
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where Ca* = µU/σ(`1) is the film-level capillary number;
µ, and σ are, respectively, the viscosity and surface tension
of the liquid (the “continuous phase”); r is the radius of cur-
vature of the Plateau border where it meets the film and is
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that is given by* (Fig. 27), the viscous term may become Φ dependent. Pro-
vided that the effect of the Tl jumps may be neglected, or
that the associated viscous contribution also scales with
µCa1/3, this model would then predict for the shear viscos-
ity:
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Figure 28 Film being pulled out of a Plateau border with velocity U(t); all viscous dissipation occurs in the transition region (II). (From
Ref. 108, with permission from Academic Press.) 

where the macroscopic capillary number Ca = µaγ/σ, a is
the length of the hexagon that circumscribes a drop or bub-
ble, and µ, is the viscosity of the contintuous phase. Be-
cause of the small amplitude of the imposed motion, the
result does not depend on the volume fraction. It was further
argued that, in the case of emulsions, the effect of the dis-
persed-phase viscosity, µd, is relatively insignificant.
Reinelt and Kraynik (117) later estimated that this is a good
approximation as long as

Apart from a change in the numerical coefficient, Eq.
(81) is expected to apply also to a periodic, small-amplitude
shearing motion. However, in steady shear, rapid film mo-
tions associated with the Tl processes, whose effect has so
far not been analyzed, periodically interrupt the above
process. Further, as the strain at the instability depends on
the volume fraction

*In the original paper (108) the numerical coefficient was given
as 6.7. This and a few other minor numerical errors were pointed
out by Reinelt and Kraynik [118 and personal communication].

or, for the shear stress:

where C(Φ;) and C’(Φ) are of order unity, and the yield
stress ι0 is given by Eq. (70). Equations (83) and (84) de-
scribe a particular type of “Herschel-Bulkley” behavior,
characterized in general by ι = ι0 + Kγ” and µe = ι0/γ + Kγn-

1. The special case of n = 1 is referred to as “Bingham plas-
tic” behavior. Occasionally, foams and concentrated
emulsions are claimed to behave as Bingham fluids. As we
shall see, this is not so. (In fact, it is extremely unlikely that
any fluid, when examined carefully, can be described as
such.)

Reinelt and Kraynik (118) improved on the above model
by including structural changes that result from the fact that
the film tensions deviate from the equilibrium value of 2σ
as they are being pulled out of or pushed into the Plateau
border. These changes are of order (Ca*)2/3, as already
pointed out by Mysels et al. (109). As the values and signs
of Ca* at any instant are different for the three films ema-
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nating from a Plateau border, their tensions are generally
unequal and the angles between them deviate from 120°,
while the Plateau border radius, r is also affected. However,
these refinements do not alter the qualitative conclusion of
the original model, as embodied in Eq. (81), for either pla-
nar-extensional or shear deformations. Applying this ap-
proach to uniform dilatation of a foam, Reinelt and Kraynik
(118) also derived an expression for the dilatational viscos-
ity, which again scales with µCa-1/3. Using a different sur-
face-rheological description, Edwards and coworkers
(119-121) arrived at alternative expressions for the dilata-
tional viscosity of wet and dry foams.

In yet another extension, Reinelt and Kraynik (117) ap-
plied the approach to steady shearing and planar-exten-
sional flow of perfectly ordered 2-D systems for 0.9069 <
Φ < 0.9466. This is the range of “very wet” systems, for
which the shear stress varies continuously with strain over
a complete strain cycle (cf. Fig. 25), so that rapid film
events associated with Tl processes are avoided. They also
investigated the effect of orientation, while structural ef-
fects due to changes in film tension were again included. As
before, the effective viscosity was found to be proportional
to µCa-1/3. Interestingly, the model indicates that the effec-
tive viscosity increases with increasing volume fraction,
which parallels practical experience.

Okuzuno and Kawasaki (122) simulated the shear rheol-
ogy of dry, random 2-D systems, using their “vertex model”
in which the films are uncurved and do not generally meet
at 120° angles. Although Plateau’s condition is therefore
violated, the model offers the advantage of being computa-
tionally more efficient than other, more realistic models.
By solving the “equations of motion” for all the vertices,
while taking account of Tl rearrangements and using the
energy-dissipation approach of Schwartz and Princen
(108), these authors tentatively concluded that the system
behaves like a Bingham plastic fluid. However, since the
number of simulations were quite limited, they did not rule
out Herschel-Bulkley behavior with n#1 (see above). In a
later study, the same investigators (123) observed violent
flows like that of an avalanche in their simulations in the
large strain regime at small shear rate. Similar avalanche-
like flows were observed in simulations by Jiang et al.
(124).

This review is not exhaustive by any means. Other stud-
ies have been and are being published regularly, as the topic
continues to enjoy considerable interest. It appears, how-
ever, that theoretical analyses and computer simulations can
only go so far. There is a need for careful experimental
work in order to establish the actual behavior of real sys-
tems. As has been the case in the past, further progress will
be optimal when the two approaches go hand in hand.

B. Experimental Approaches and Results 

The rheological parameters of primary scientific and prac-
tical concern are the static and dynamic shear modulus, the
yield stress, and the shear rate-dependent viscosity. The aim
is to understand and predict how these depend on the sys-
tem parameters. In order to accomplish this with any hope
of success, there are two areas that need to be emphasized.
First, the systems studied must be characterized as accu-
rately as possible in terms of the volume fraction of the dis-
persed phase, the mean drop size and drop size distribution,
the interfacial tension, and the two bulk-phase viscosities.
Second, the rheological evaluation must be carried out as
reliably as possible.

1. System Characterization 

The bulk phases are generally Newtonian and their viscosi-
ties can be measured with great accuracy with any standard
method available.

The nominal volume fraction of the dispersed phase can
be obtained very accurately from the relative volumes (or
weights) of the phases used in the preparation of a highly
concentrated emulsion (67). A series of emulsions, differing
only in volume fraction, may be conveniently prepared by
dilution of a mother emulsion with varying known amounts
of the continuous phase (67). Alternatively, if the phases
differ greatly in volatility, the volume fraction may be ob-
tained, albeit destructively, from the weight loss associated
with evaporation of the more volatile phase, usually water
(125). Another destructive method is to destroy the emul-
sion by high-speed centrifugation in a precision glass tube,
followed by accurate measurement of the relative heights of
the separated liquid columns (22). To arrive at the effective
volume fraction, the nominal volume fraction may need to
be corrected for a finite film thickness according to Eq. (1).
Since all rheological parameters depend more or less
strongly on the volume fraction, it is important that the ver-
tical gradient in volume fraction due to gravity be kept to a
minimum, if reliable rheological evaluations are to be ex-
pected. The gradient in volume fraction may be predicted
quantitatively (65). Since the drop size and the density dif-
ference between the phases are generally much larger in
foams than in emulsions, the gradient in Φ is usually much
more pronounced in the former than in the latter. The rhe-
ologies of both types of systems being governed by identi-
cal laws, it is preferable - for this and many other reasons
(see below) - to use emulsions, rather than foams, to learn
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about foam rheology.

The mean drop size and drop size distribution can be
measured to within a few per cent accuracy with a number
of techniques, such as the “Coulter Counter” (67, 93, 126)
and dynamic light scattering. The Coulter Counter is emi-
nently suitable for oil-in-water emulsions but has a lower
practical limit of about 1 µm. Various light-scattering tech-
niques are equally suitable for oil-in-water and water-in-oil
emulsions and afford a larger dynamic range. In either case,
the concentrated emulsion must be diluted with the contin-
uous phase to a level where coincidence counting or mul-
tiple scattering, respectively, is avoided. One popular
method that should perhaps be avoided is optical mi-
croscopy, which is not only tedious but also relatively inac-
curate when applied to polydisperse systems because of
depth-of-focus limitations and wall effects. At any rate, a
practical lower limit for accurate, quantitative optical mi-
croscopy is well in excess of 1 µm. Whatever method is
used, it is desirable that complete size distributions be re-
ported. At the very least, when only a mean drop size is re-
ported, the type of mean should be specified. Finally, it
appears that size determinations are a lot easier to obtain in
emulsions than in foams. Moreover, while it is easy to pre-
pare emulsions whose drop size distribution changes im-
perceptibly over a period of months, the bubble size
distribution in foams changes very rapidly as a result of
Ostwald ripening. It is, therefore, almost impossible to have
accurate knowledge of the bubble size distribution at the
moment a rheological measurement is being made. These
are yet additional reasons for using emulsions in order to in-
vestigate foams.

The interfacial tension may be determined to within
about 1% accuracy with the spinning-drop method (127,
128). It is an absolute and static method that requires only
small samples and, in contrast to most other methods, does
not depend on the wettability of a probe, such as a ring or
Wilhelmy plate. The stabilizing surfactant is commonly
used at concentrations in the bulk continuous phase that are
far above the critical micelle concentration (cmc). This en-
sures that the concentration remains above the cmc after
adsorption on to the vastly extended interface has taken
place, which is clearly needed to maintain emulsion stabil-
ity. It is tempting, therefore, to assume that the interfacial
tension in the finished emulsion equals that between the
unemulsified bulk phases and that it remains constant when
a “mother emulsion” is diluted with continuous phase in
order to create a series of emulsions in which only Φ is var-
ied (67). This may be a reasonable assumption when a pure
surfactant is used, but there is evidence that this may not be
so when impure commercial surfactants or surfactant mix-

tures are employed (93, 126).

2. Rheological Evaluation 

Most studies have used standard rheological techniques,
such as rotational viscometers of various types and geome-
tries, such as concentric-cylinder, cone-and-plate, and par-
allel-plate rheometers, each of which may be operated in
various modes (constant stress, constant strain, steady
shear, or dynamic, i.e., oscillatory shear). The relative ad-
vantages and/or limitations of these and other techniques
may be found in any standard textbook on practical rheom-
etry [e.g., (129)]. When applied to highly concentrated
emulsions and foams - or suspensions in general, for that
matter - these techniques are fraught with many difficulties
and pitfalls that are often overlooked, leading to results of
questionable validity. Some of these difficulties are the fol-
lowing.

a. Wall-induced Instability 

Princen (67) has reported that, otherwise very stable, oil-in-
water emulsions showed extremely erratic behavior when
sheared in a commercial concentric-cylinder viscometer
with stainless-steel parts. The problem could be traced to
“coalescence” of the dispersed oil droplets with the steel
walls and the formation of a thick oil layer. Apparently, the
thin films of continuous phase separating the walls from
the first layer of individual droplets were unstable and rup-
tured. Coating all relevants parts with a thin film of silica,
which assured adequate film stability and complete wetting
of the steel by the continuous phase, solved the problem
(67). Later, an even more satisfactory solution consisted of
replacing the steel inner and outer cylinders with glass
parts, combined with other improvements in design (93,
126, 130). Some of the glass cylinders were highly pol-
ished; others were roughened and equipped with vertical
grooves to eliminate or reduce wall slip (see below). Wall-
induced instability may or may not be a problem, depend-
ing on the wall material, the emulsion (W/O or O/W), and
surfactant type.

b. End and Edge Effects 

In the analysis of raw data obtained with any type of rota-
tional viscometer, it is assumed that the flow field is known
and simple. For example, in the conventional concentric-
cylinder viscometer, it is assumed that the fluid moves in
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concentric cylindrical layers that extend unchanged from
the precise top to the precise bottom of the inner cylinder.
This is true only when the cylinders are infinitely long. For
cylinders of finite length, complications at the top are usu-
ally minor and can often be neglected. In the lower region
of the viscometer, however, the flow is seriously disturbed.
In addition, the bottom of the inner cylinder may contribute
a substantial fraction of the total measured torque. This can
lead to serious errors. Various suggestions have been made
to deal with the problem (129) but their practical value is
questionable. In addition to making other improvements,
including the use of a hollow inner cylinder, Princen (93,
126, 130) effectively isolated the bottom region by filling
it with a layer of mercury. That way, the sample of interest
is strictly confined to the space between the cylinders. As
long as its effective viscosity is much greater than that of
mercury, flow between the cylinders is undisturbed and the
torque on the bottom of the inner cylinder is negligible. The
arrangement is shown schematically in Fig. 29.

In the cone-and-plate viscometer, there are similar,
though perhaps somewhat less severe, problems associated
with the outer edge (129).

c. Wall Slip 

Along with wall-induced instability, the occurrence of slip
between the sample and the viscometer walls is one of the
most serious and prevalent, though often neglected, prob-
lems one encounters in assessing the rheology of dispersed
systems in general, and concentrated emulsions in particu-
lar. Since concentrated emulsions have a yield stress, wall
slip - if present -can be readily demonstrated by painting a

thin line of dye on top of the sample in a wide-gap rotating-
cylinder viscometer (67). As long as the yield stress is not
exceeded at the inner cylinder wall, the sample is not
sheared at all but is seen to move around in the gap as an
elastically strained solid! In this regime, shear is confined
to the thin films of continuous phase separating the wall
from the adjacent droplets. For a sufficiently smooth wall,
it is possible to estimate the thickness of these films from
the measured wall stress and angular velocity (67).

It is obvious that neglect of wall slip may lead to mean-
ingless conclusions as to the system’s rheology. There are
two different approaches to dealing with this particular
problem. First, one can try to eliminate slip by roughening
the viscometer surfaces. Princen and Kiss (93) successfully
used roughened and grooved glass cylinders to determine
the static shear modulus of concentrated emulsions. This
worked well in the low-stress, linear elastic regime, al-
though even here some wall creep did occur (which could
be readily corrected for). However, massive wall slip was
noted to commence at shear stresses exceeding only about
one-half of the bulk yield stress. Thus, even though the
roughness was commensurate with the drop size and served
the intended purpose, the arrangement would have been in-
adequate for determining the yield stress and shear viscos-
ity. Therefore, the question remains how rough a surface
must be to eliminate slip up to the maximum shear stress
considered. As an extreme case, large radial vanes have
been recommended, at least for yield stress measurments
(131). Although undoubtedly effective in preventing slip,
the vanes do lead to some uncertainty in the strain field.

Many published rheological studies declare that wall slip
was checked for and found to be absent. Unless solid evi-
dence is provided, it behooves the reader to approach such
assertions with a healthy dose of skepticism.

A second approach is to permit slip and to correct for it.
This usually involves running the sample in two or more
viscometer geometries, e.g., at different gap widths (129,
132, 133). Doubts have been expressed as to the validity of
this approach (134). At any rate, the procedure is rather te-
dious and may not be very accurate. In an alternative
method, Princen and Kiss (126), using their improved de-
sign with polished glass cylinders, established empirically
that the torque versus angular velocity data for concentrated
emulsions may be linearized over most of the all-slip/no-
flow regime. The stress at which the data deviated from this
linear behavior was identified as the yield stress. Under the
further, reasonable assumption that the linearized slip be-
havior persists above the yield stress, where flow com-
mences, the angular velocity could be corrected for wall
slip. Following standard rheological procedures for yield-
stress fluids in a wide-gap concentric-cylinder viscometer,
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Figure 29 Modified concentric-cylinder viscometer with glass
outer cylinder, hollow glass inner cylinder, and pool of mercury to
confine sample to gap and thus to minimize end effect. 
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the dependence of the effective viscosity on shear rate
could then be determined.

It is clear from the above that extreme care must be ex-
ercised in the characterization and rheological eva-luation
of concentrated emulsions. Few, if any, com-mercial vis-
cometers are designed to give reliable results for nonNew-
tonian fluids. Not only are modifications of the hardware
often called for, but also the software of automated instru-
ments is generally incapable of dealing with yield-stress
fluids, end effects, and wall slip. For example, to correct
for end effects, it will not do to use a calibration or “instru-
ment factor” for any but Newtonian fluids. Unfortunately,
there are no shortcuts in this field!

3. Experimental Results 

For reasons indicated above, accurate physical char-acter-
ization and rheological evaluation offoams is extremely dif-
ficult. Indeed, although there is much published material
on foams that is qualitatively con-sistent with what one
would expect (and much that is not), we are not aware of
any such studies that can stand close quantitative scrutiny.
Therefore, we shall restrict ourselves to what has been
learned from highly concentrated emulsions, whose rheol-
ogy is, in any case, expected to be identical to that of foams
in most respects. However, even in the emulsion area, the
number of carefully executed studies is severely limited.
Admittedly not without some preju-dice, we shall concen-
trate on the systematic experi-mental work by two groups
that were active at different times at the Corporate Research
Laboratory of Exxon Research and Engineering Co., i.e.,
Princen and Kiss (67, 93, 126) and Mason and coworkers
(64, 125, 135, 136). Both groups used oil-in-water emul-
sions but, while Princen and Kiss used “typical” polydis-
perse emulsions with a mean radius of 5 to 10 µm, Mason
and coworkers opted for sub-micrometer, monodisperse
“Bibette emul-sions”. The term “monodisperse” is relative;
there remained some polydispersity in drop radius of about
10%, and the emulsions were structurally dis-ordered on a
macroscopic scale. The mean drop size in Princen’s emul-
sions was at least an order of mag-nitude greater, which
may account for some of the differences in the results (see
below). Princen and Kiss used their customized concentric-
cylinder visc-ometer exclusively, either in steady shear with
wall slip (to give the yield stress and viscosity) or as a con-
stant-strain device without wall slip (to give the static shear
modulus). Mason and coworkers were more eclectic in
choosing their techniques (con-centric-cylinder and cone-
and-plate geometries in steady-shear and dynamic modes,

as well as optical techniques).

a. Shear Modulus 

Princen and Kiss (93) used a series of well-character-ized,
polydisperse oil-in-water emulsions of essentially identical
Sauter mean drop size, R32, and drop size distribution, but
varying dispersed-phase volume frac-tion, Φ. Their modi-
fied Couette viscometer was purpo-sely equipped with
ground and grooved glass cylinders to eliminate wall slip*,
and the emulsion was strained by turning the outer cylinder
over a small, precisely measured angle in the linear elastic
regime. From the measured stress at the inner cylinder, the
static shear modulus, G, could be obtained in a straightfor-
ward manner. The results in Fig. 30 show that, over the
range considered (0.75 < Φ < 0.98), GR32/σ Φ1/3 varies lin-
early with 0, and we may write
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Figure 30 Scaled static shear modulus, GR32/σ Φ1/3, vs. Φ for
typical polydisperse emulsions. Solid points are experi-mental
data; solid line is drawn according to Eq. (85). (From Ref. 93,
with permission from Academic Press.)

This fact was unfortunately misrepresented in Ref. 64.

Copyright © 2001 by Marcel Dekker, Inc.



where φ0 = 0.712 may be identified as the “rigidity-loss
transition” for the particular size distribution in these emul-
sions. This is surprisingly close to that for ideal close pack-
ing of monodisperse spheres (φ0 = 0.7405) but clearly in
excess of that for random close packing of monodisperse
spheres (φ0 ≈ 0.64). The exact value of φ0 is expected to
depend somewhat on the details of the drop size distribu-
tion.

In the “dry-foam” limit (φ = 1), Eq. (85) reduces to

Mason et al. show values for GR/σ of about 0.30 and 0.10,
respectively, while Eq. (85) yields 0.23 and 0.061 for
GR32/σ. The differences are roughly commensurate with
the scatter in Mason’s data. At any rate, the difference in
poly-dispersity in the two sets of emulsions, or some ex-
peri-mental factor in either study (end/edge effects?), may
well explain these minor systematic discrepancies.

Overall, Mason et al. found that their data may be de-
scribed by
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As indicated above, this is in close agreement with various
theoretical estimates.

It may be argued which mean drop size is most appropri-
ate for describing the rheology of polydisperse systems. The
selection of R32 is based on limited evi-dence (67) and
some other mean might ultimately turn out to be preferable.
A simple extension of the perfectly ordered 2-D model to a
3-D model would have suggested that G = 0 for φ < φ0 =
0.74, with a sudden jump to an almost constant, finite value
of G � σ φ 1/3/R for φ > 0.74 [cf. Eq. (72)]. As discussed
above, it is now generally agreed that the absence of the
discontinuity and the essentially linear dependence on Φ
above Φ0, found experimentally, is as a result of structural
disorder.
Masonet al. (64) used small-amplitude, dynamic, oscilla-
tory methods (both in cone-and-plate and con-centric-
cylinder geometries) to probe the viscoelastic properties,
i.e., the storage (elastic) and loss (viscous) moduli, G’ and
G’, as a function of frequency, ω. No mention is made of
wall-induced instability, or end and edge effects. Having
roughened the viscometer walls, the authors claim that wall
slip was nonexistent. At low frequencies, G’ reached a
plateau that may be equated with the static shear modulus,
G. Plots of the scaled modulus, GR/σ, versus the effective
volume fraction, φe, for four emulsions of different drop
size essentially overlapped, as expected. The drops were so
small that significant corrections had to be made to the
nominal volume fractions to account for the finite (esti-
mated) film thickness, h, according to Eq. (1). In the dry-
foam limit (φe = 1), the scaled modulus approached a value
of about 0.6, which is reasonably close to Princen’s value of
0.51, but even for φ < 1, the data of the two groups are re-
markably similar. For example, for φe = 0.85 and 0.75,

where φ0 ≈ 0.64 is the value for random close packing of
monodisperse spheres. Except for the difference in φ0, this
is very similar to Eq. (85).

Because of the limited sensitivity of their viscometer,
and the increased potential effect of a gradient in φ due to
gravity, Princen et al. (93) did not explore the range of φ <
0.75 and reasonably assumed that the linear behavior in Fig.
30 continues down to G = 0 at φ = φ0 ≈ 0.71. It is unclear
what significance, if any, must be attached to the apparent
difference in φ0 found in the two studies. Had it been pos-
sible to explore that regime properly, Princen’s data might
have shown some curvature for φ < 0.75 and a similar
smooth decline in G toward zero at φ0 ≈ 0.64. More likely,
the difference is real and simply attributable to the differ-
ences in polydispersity and associated ran-dom-packing
density. Another factor of potential sig-nificance is the large
difference in mean drop size. The drops in Mason’s emul-
sions were submicrometer and, therefore, Brownian, which
may contribute an entropic (thermal) component to the
modulus, as well as affect the packing density.

Direct support for Eq. (85) has been reported by, among
others, Taylor (137), Jager-Lezer et al. (138), Pal (139), and
Coughlin et al. (140). Indirect support has been obtained
by Langenfeld et al. (141) who com pared the specific sur-
face areas of a number of water-in-oil emulsions as deter-
mined by two independent methods; (1) from the measured
shear modulus -which yields R32 from Eq. (85), and thus
the specific surface area from 3φ/R32 - and (2) from small-
angle neutron scattering. The agreement was very satisfac-
tory.

b. Yield Stress and Shear Viscosity 

Using their modified concentric-cylinder viscometer -
equipped in this case with polished glass inner and outer
cylinders to allow unimpeded wall slip, and a mercury pool
to eliminate the lower end effect -Princen and Kiss (126)
determined the yield stresses, τ0, and effective viscosities,

Copyright © 2001 by Marcel Dekker, Inc.



µe (γ), of a series of well-characterized, polydisperse oil-in-
water emulsions. They empirically established that in all
cases the all-slip/no-flow regime at slow steady shear was
character-ized by a linear dependence of τ1 on ω/τ1 (where
τ1 is the stress on the inner cylinder, and ω is the angular
velocity of the outer cylinder). The stress at which the data
deviated from this linearity was identified as the yield
stress. At higher angular velocity, it was reason-ably as-
sumed that the same linear slip behavior con-tinued to op-
erate, which permitted a straightforward slip correction.
Using conventional rheometric ana-lyses, the stress and vis-
cosity were finally obtained as a function of shear rate.

The yield stress data could be expressed in the form:

Figures 32 and 33 show the fully corrected plots of shear
stress versus shear rate. Taking account of small differences
in the measured interfacial tensions, all data could be accu-
rately represented by
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The experimental values of Y(Φ) are shown in Fig. 31 and
may be empirically fit to

Equation (89) should be used only within the range consid-
ered, i.e., 0.83 < φ < 0.98.

Data from Pal (139) support Eqs (88) and (89), once the
volume fraction is corrected for a finite film thick-ness of
90 nm. Earlier data from Princen (67) are con-sistently
somewhat higher, probably because of significant end ef-
fects in the original, unmodified visc-ometer.

Figure 31 Yield stress function Y(φ) = τ0R32σ φ 1/3 vs. Φ for typ-
ical polydisperse emulsions. Solid points are experi-mental data;
curve is drawn according to Eq. (89). (From Ref. 126, with per-
mission from Academic Press.) 

where µ is the viscosity of the continuous phase, and Ca is
the capillary number:

Figure 32 Fully corrected plots of shear stress vs. shear rate for
series of typical polydisperse emulsions. Arrows indicate the yield
stress, τ0. Emulsions EM 2-7 have the same drop size (R32 = 10.1
± 0.1 µm) but different volume fractions (φ =
0.9706,0.9615,0.9474,0.9231,0.8889, and 0.8333, res-pectively).
For EM8, R32 = 5.73 nm and φ = 0.9474. (From Ref. 126, with
permission from Academic Press.)
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which did not exceed a value of 104 in any of the experi-
ments.

For the effective viscosity, this leads to

and only systematic study of its kind, it is not yet clear how
generally applicable Eqs (90) and (92) will turn out to be.
Although some other qualitative experimental support ex-
ists (142-144), there is a great need for additional, careful
studies to explore this area further. It may be significant in
this context that Liu et al. (145), using diffusing-wave spec-
troscopy [a light-scattering techni-que (146)] have found a
contribution to the dynamic shear modulus that is propor-
tional to ω1/2 (or Ca1/2) and increases roughly linearly with
volume fraction. Mason et al. (136) investigated the steady
shear beha-vior of some monodisperse emulsions in the
low-φ range. They found that the viscous stress contribution
varies as γ2/3 for φ = 0.58 and as γ1/2 for φ = 0.63. For φ >
0.65, no clear power-law behavior was observed. These au-
thors claim that meaningful steady-shear mea-surements
cannot be made on emulsions of higher volume fractions
because of the occurrence of “inho-mogeneous” strain
rates. They presumably refer to the fact that, e.g., in a con-
centric-cylinder viscometer, only part of the emulsion (i.e.,
within a given radius) is being sheared, while the outer part
is not. However, this situation, common to all yield-stress
fluids, has been well recognized and analyzed in the rheol-
ogy lit-erature, and can be handled in a quite straightfor-
ward manner (126).

Mason et al. (136) determined the yield stresses and
yield strains of a series of monodisperse emulsions, using
either a cone-and-plate or double-wall Couette geometry in
oscillatory mode. Wall-induced coales-cence and wall slip
were claimed to be absent, but no mention is made of at-
tempts to reduce end or edge effects. Estimated film thick-
nesses were used to arrive at the effective volume fractions.
Their data for the yield stress could be fit to

274 Princen

Figure 33 Plots of log (τ - τ0) vs. shear rate for same emulsions
as in Fig. 32. In all cases, the slope is very close to 1/2 (From Ref.
126, with permission from Academic Press.) 

where τ0 is given by Eqs (88) and (89). Again, Eq. (92)
should not be used outside the range considered. It is inter-
esting to point out that, as with so many other properties, the
viscous term tends to zero at φ = φ0 ≈ 0.73.

It is encouraging that Eqs (90) and (92) have the same
form as Eqs (84) and (83), respectively, except for the ex-
ponent of the capillary number. Several rea-sons for this
difference have been advanced (126), including the neglect
of Tl rearrangements and disjoin-ing pressure effects in the
original model. At any rate, considering that this is the first

and, for high φ, are claimed to be “about an order of mag-
nitude greater than those measured for polydis-perse emul-
sions,” as given by Eqs (88) and (89). This appears to be a
misrepresentation. It is readily demon-strated that the two
sets of data are, in fact, quite comparable. For example, for
φ = 0.85 and φ = 0.95, the values of the scaled yield stress,
τRR/σ, are 0.027 and 0.055 according to Eq. (93), and
0.013 and 0.067 according to Eq. (88). In fact, as φ → - 1,
Mason et al. predict that the scaled yield stress reaches a
limiting value of 0.074, whereas extrapolation of Princen
and Kiss’s data in Fig. 31 suggest a value that is well in ex-
cess of 0.1 and perhaps as high as 0.15 (the yield stress
must remain finite in this limit and use of Eq. (89) is unwar-
ranted in this regime). Masonet al. further assert that, at
high φ, the yield strain of their monodisperse emulsions is
also over an order of magnitude greater than that of the
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polydisperse emulsions of Princen and Kiss. This conclu-
sion appears to be equally unfounded. In fact, the rheolog-
ical behavior of concentrated emulsions appears to be
remarkably unaffected by polydispersity.

We are not aware of any other systematic experi mental
studies that meet the criteria set out above and there re-
mains a great need for additional careful work in this fas-
cinating area.

VIII. ADDITIONAL AREAS OF INTEREST 

lthough this review covers many aspects of highly concen-
trated emulsions and foams, it does not deal with a number
of issues that are of considerable inter-est. Foremost is the
issue of emulsion and foam stabi-lity. A great deal of infor-
mation can be gleaned from recent books on foams and
conventional emulsions (17-20). The stability of highly
concentrated emulsions is a rather more delicate and spe-
cialized problem. The reader may consult a number of pub-
lications that spe cifically deal with this subject (147-152).

One of the main driving forces for the recent upsurge in
interest in foams - and one that has been responsible for the
entrance of so many physicists into the field - has been their
presumed usefulness in mod-eling grain growth in metals.
The coarsening of foam through gas diffusion (a special
form of Ostwald ripen-ing) is thought to follow similar
laws. This, among other things, inspired the first computer
simulations of foams by Weaire and coworkers and remains
an active area of research (31).

As indicated above, highly concentrated emulsions pro-
vide attractive starting materials for the synthesis of novel
materials, e.g., polymers and membranes. Ruckenstein has
been particularly active in this area. In addition to the ref-
erences cited earlier (6, 12-16), the reader may wish to con-
sult a recent comprehensive review of this area (153).

ACKNOWLEDGMENTS 

Special thanks are due to A. M. Kraynik for the many stim-
ulating discussions we have had over the years, for keeping
me informed on recent developments, and for kindly pro-
viding some of the unpublished results and illustrations. I
have also benefited from illuminating discussions with P.-
G. de Gennes and D. Weaire. My interest in these fascinat-
ing systems goes back to my years at Unilever Research,

where E. D. Goddard and M. P. Aronson provided invalu-
able and much appre ciated support and collaboration.

NOMENCLATURE 
Latin Symbols

a side of hexagon circumscribing compressed 2-D
drops in perfect order

a0 side of hexagon circumscribing uncompressed
(circular) 2-D drops in perfect order

ac capillary length = [σ/(∆ ρ.g)]1/2

Ci mean curvature of surface between Plateau border
and drop i

Cy mean curvature of film between drops i and j
Ct mean curvature of free surface of continuous

phase at dispersion/atmosphere boundary
Ca macroscopic capillary number = σaγ/σ or µR32γ/σ
Ca* film-level capillary number =µu/U/σ
e number of edges of a polyhedral drop
f number of faces of a polyhedral drop
f(φ) fraction of surface of confining wall “in contact”

with dispersed drops
F stress per unit cell
Fmax maximum or yield stress per unit cell g acceration

due to gravity
G static shear modulus
G’ storage modulus
G” loss modulus
h film thickness
heq equilibrium film thickness
h� half the film thickness pulled out of Plateau bor-
der
H sample height
Hcr critical sample height for separation of continuous

phase
K compression modulus
Pb pressure in Plateau border
pc capillary pressure
pt pressure in drop i
Pv

c vapor pressure of continuous phase in dispersion
(Pc

v)0 vapor pressure of bulk continuous phase
Pd

v vapor pressure of dispersed phase in dispersion
(pd

v)0 vapor pressure of bulk dispersed phase
P external pressure
r radius of Plateau border surfaces in 2-D close-

packed drops
R radius of spherical or circular drop
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Rav average drop radius
R32 surface-volume or Sauter mean drop radius � gas
              constant
S surface area of compressed drops
S0 surface area of uncompressed (spherical or circu-
lar) drops
Sf surface area contained in films
T absolute temperature
U film velocity
υ number of vertices of a polyhedral drop
V dispersion volume
V1 volume of the dispersed phase
V2 volume of the continuous phase in the dispersion

1, 2 partial molar volume of phases 1 and 2, respec-
               tively
Y(φ) yield stress function
z vertical height in dispersion column

Greek Symbols

y strain
γ rate of strain
∆ ρ density difference
θ contact angle at film/Plateau border junction
µ viscosity of continuous phase
µd viscosity of dispersed phase
µe effective viscosity of dispersion
Π osmotic pressure
Πd disjoining pressure
ρ density
σ surface or interfacial tension
τ stress
τ0 yield stress
τs stress due to dissipative processes
φ volume fraction of dispersed phase in emulsion or

foam
φ0 volume fraction of close-packed spherical drops
φe effective volume fraction, after correction for fi-

nite film thickness
ψ angle between films and shear direction
ω frequency or angular velocity
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